O.P.Code: 23ME0309 **R23** H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS) B. Tech. II Year II Semester Supplementary Examinations December-2025 FLUID MECHANICS & HYDRAULIC MACHINES

		FLUID MECHANICS & HIDRAULIC MACHINES						
(Mechanical Engineering) Time: 3 Hours Max. Marks: 70								
1 1m	е: -		Max.	Mark	s: 70			
		PART-A						
30	_	(Answer all the Questions $10 \times 2 = 20$ Marks)	001					
1		Define the term weight density.	CO1	L1	2M			
		Explain the term meta-centre.	CO1	L2	2M			
		Distinguish between steady flow and un-steady flow.	CO2	L4	2M			
		Describe Venturimeter and Orificemeter.	CO2	LI	2M			
		Explain the terms Drag and Lift.	CO3	L2	2M			
		What is Dimensional homogeneity.	CO4	L3	2M			
		Define the terms, Unit Speed and Unit Head	CO ₅	L1	2M			
		Explain about Hydraulic Efficiency and Mechanical Efficiency.	CO5	L2	2M			
	i	Differentiate between Radial and axial flow turbine.	CO6	L2	2M			
	j	Define cavitation and water hammer.	CO6	Ll	2M			
		PART-B						
		(Answer all Five Units 5 x 10 = 50 Marks) UNIT-I						
2	a	List out different types of manometers. Explain about piezometer in detail	CO ₁	L1	4M			
	b	An inverted U – tube manometer is connected to two horizontal pipes A	CO ₁	L3	6M			
		and B through which water is flowing. The vertical distance between the						
		axes of these pipes is 30cm. When an oil of specific gravity 0.8 is used as						
		a gauge fluid, the vertical heights of water columns in the two limbs of						
		the inverted manometer (when measured from the respective center lines						
		of the pipes) are found to be same and equal to 35 cm. Determine the						
		difference of pressure between the pipes.						
3		A solid cylinder of 10cm diameter and 40 cm long. Consists of two parts	CO ₁	L3	10M			
		made of different materials. The first part of the base is 1.0 cm long and						
		of specific gravity 6.0. The other part of the cylinder is made of the						
		material having specific gravity 0.6. State, if it can float vertically in						
		water.						
		UNIT-II						
4	a	What is a pitot tube? How will you determine the velocity at any point	CO ₂	L2	5M			
		with the help of pitot tube?						
	b	A sub-marine moves horizontally on a sea and has its axis 15m below the	CO ₂	L5	5M			
		surface of water. A pitot tube properly placed just in front of a sub-marine						
		and along its axis is connected to two limbs of a u - tube containing						
		mercury. The difference of mercury level is found to be 170mm.						
		Determine the speed of the sub-marine knowing that the specific gravity						
		of mercury is 13.6 and that of sea water is 1.026 with respect of fresh						
		water.						
		OR						
5		A main pipe divides into two parallel pipes which again forms one pipe	CO ₂	L3	10M			
		as shown in figure. Above the length & and dia for the first parallel pipe						
		are 2000m & 1.0m respectively. While the length & dia of 2 nd parallel						
		pipe are 2000m & 0.8m. Calculate the rate of flow in each parallel pipe if						
		total flow in the main is 3.0 m ₃ /s, the coefficient of friction for each						
		parallel pipe is same & equal to 0.005?						

6	A thin plate is moving in still atmospheric air at a velocity of 5m/s. the length of the plate is 0.6m and width 0.5 m. Calculate (i) the thickness of the boundary layer at the end of the plate and (ii) drag force on one side of the plate. Take density of air as 1.24kg/m ³ and kinetic viscosity 0.15 stokes.	CO3	L3
7	OR Determine the dimensions of the quantities given below	CO4	L5
	(i) angular velocity		
	(ii) angular acceleration		
	(iii) discharge		
	(iv) Kinematic Viscosity		
	(v) Force,	4	di.
	(vi) Dynamic Viscosity		14.0.1
	UNIT-IV		
8	A nozzle of 50 mm diameter delivers a stream of water at 20m/s	CO5	L2
	perpendicular to a plate that moves away from the jet at 5m/s Find:		
	(i) the force on the plate		
	(ii) the work done		
	(iii) the efficiency of jet.		
	OR		
9	A Francis turbine with an overall efficiency of 75% is required to produce 148.25KW. It is working under a head of 7.62 m. The peripheral velocity = 0.26√2gH and the radial velocity of the flow at inlet is 0.96√2gH. The wheel runs at 150 rpm and the hydraulic losses in the turbine are 22% of the available energy. Assume radial discharge, determine, i) guide blade angle, ii) wheel vane angle at inlet, iii) diameter of wheel at inlet and iv) width of wheel at inlet	CO5	L5
10	a Describe the governing mechanisms employed in hydraulic turbines.	CO6	1.5
10	How do these mechanisms regulate the speed and output of the turbine?	C06	L5
	b Define and explain hydraulic efficiency, mechanical efficiency and overall efficiency.	CO6	L2
	OR		
11	A single-acting reciprocating pump, running at 50 r.p.m., delivers 0.01 m ³ /s of water. The diameter of the piston is 200 mm and stroke length is 400 mm. Determine: (i) Theoretical discharge of the pump, (ii) Coefficient of discharge and (iii) Slip and the percentage slip of the pump. *** END ***	CO6	L5

UNIT-III

Page 1 of 2